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CHAOTIC ELECTRON MOTION CAUSED BY SIDEBANDS IN
FREE ELECTRON LASERS

I. INTRODUCTION

Multifrequency effects in Free Electron Lasers (FELs) become

increasingly important as progress is made towards high power operation.

Growth of parasitic frequencies (sidebands -5 ) has been predicted

theoretically and has been observed in experiments 6 ,7 as well as in

8-11 11
simulations8-11 with either constant or tapered wigglers . The

efficiency for the carrier signal is reduced and the optical quality is

degraded as power is channeled into frequencies apart from the intended

operation frequency. Another potential hazard that has attracted little

attention so far is the onset of chaotic electron motion caused by the

presence of even a single frequency sideband. This may lead to extensive

particle detrapping and premature loss of the amplification for all the

radiation modes independent of frequency.

Two of the main issues concerning FEL operation are: (a) whether

unstable parasitic frequencies exist that can grow to significant

amplitude and (b) what is the effect of potentially unstable modes on

the trapped electron trajectories. Considerable attention has been

devoted to the linear stability issue. The gain for small sideband

signal has been computed analytically -5 invoking either ensemble

averaging over single particle trajectories or solutions of the

perturbed kinetic equation for the distribution function. Initial

results, obtained for particles localized near the bottom of the

ponderomotive well, and, in particular, more recent.results Including

2
all trapped and untrapped particles with arbitrary distributions, have

demonstrated that every nontrivial distribution df0 /dJ # 0 is unstable

to sideband growth.

Manuscript approved August 29, 1988.



Given that sidebands cannot be eliminated, the growth of the

unstable modes to a finite amplitude may have serious effects on the

unperturbed trajectories. It has been known that stochastic behavior12

13,14is an intrinsic property of perturbed Hamiltonian systems

Accordingly, the electron motion in a FEL will become chaotic when the

sideband amplitude exceeds a certain threshold. This, in turn, will

result in significant electron detrapping. Since it is the deceleration

of the trapped electron bucket that provides the energy for the

radiation in case of tapered wigglers, detrapping will cause loss of

amplification for the FEL signal.

In the present work we investigate the nonlinear effects caused

by sidebands. The threshold for stochasticity, above which unbound

chaotic motion occurs, is determined. Once the stochastic transition

takes place, the action J, a constant of motion in the unperturbed

system, changes in a random manner. The ensemble average <AX 2> of any

physical quantity X is described by a diffusion equation. Diffusion of

the action invariant provides a measure of the leakage rate across the

separatrix. If D is the effective diffusion coefficient in action space

then the diffusion length Ld = Js 2/D, where Js is the action at the

separatrix, signifies the length over which approximately half of the

deeply trapped particles get detrapped. We show that a single frequency

sideband at a modest fraction of the carrier amplitude suffices to

spread irregular motion over a significant fraction of the trapped

particle domain. However, given that the interaction time of an electron

in a FEL is short, we are mainly concerned on how fast this diffusion

occurs. The diffusion rate increases and the diffusion length Ld

decreases with increasing sideband amplitude(s). Thus, a critical

sideband level ac can be defined above which the diffusion length Ld

2



becomes shorter than the wiggler length L w . Obviously the power level

for the sidebands in a FEL cannot exceed a c, otherwise, extensive

diffusion and premature detrapping will occur. On the other hand, enough

electrons can remain trapped during the interaction period even though

their motion has turned stochastic, because we find that usually the

critical amplitude a is much larger than the threshold forc

stochasticity Qs.

A clear-cut relation between the diffusion rate under constant

total sideband power and the type of the excited sideband spectrum is

discovered. More specifically we observe three regimes in the simulation

parameters defining the sideband spectrum, corresponding to a narrow, a

wide discrete and a wide continuous spectrum. The transition from one

spectral type to another is accompanied by an abrupt change in the

diffusion rates. In all cases we find the diffusion coefficient

proportional to the ratio of the total power in the sidebands to the FEL

carrier power. The coefficients of this proportionality depend on the

spectral type. A general conclusion is that the diffusion rate under

constant sideband power ratio decreases with increasing number of

spectral components. The diffusion rate for a single sideband frequency

exceeds that of a broad continuous spectrum by orders of magnitude while

a broad discrete spectrum causes Intermediate diffusion rates.

For practical purposes we measure the diffusion length in terms

of the number of wiggler periods. N1 - Id/X w . while <& '> is normali ed

to the action J at the (tunperttuibed) separ, tt ix. We compute the

normalized diffitsiot coeliicint D analytically tot the cases ot broad

discrete and c'ontinuois spe('ctia. In tt latter" ciase tht qitasilinear

difiuslon (oell Iciett iN actioti space D q (I) is obtained in closed form.

This expression Io D q (J) is quite general, valid for any choice of

3



unperturbed Hamiltonian Ho(J). The analysis also shows that the

normalized diffusion coefficient does not depend on the beam energy yr

The numerical results agree well with the theory.

We evaluate the loss of trapped particles for typical short

wavelength FEL parameters. We find that a single frequency sideband with

a sideband to carrier power ratio of < 1 can cause half of the particles

to detrap over 100 wiggler periods; we have observed total loss of

trapped particles for power ratios of = 1. In cases of wide but discrete

sideband spectrum the diffusion length becomes comparable to the wiggler

length only at large power ratios ( 1). The case of a wide continuous

spectrum seems to cause insignificant electron detrapping for the same

parameters as above; the typical diffusion length is of the order of

1000 wiggler periods for sideband to carrier power ratios of 1.

In our investigation we have assumed all electromagnetic fields

as given. The changes in the particle trajectories are decoupled from

the evolution of the fields. At the expense of self-consistency we are

able to analyze the situation theoretically and determine the scaling of

the diffusion rates on the various FEL parameters. Deterioration in the

extraction efficiency has been observed in self-consistent numerical

simulations of high power FEL oscillators with high level sideband

excitation. The gain per pass in a tapered wiggler is progressively

limited as the sideband power goes up and the rate of electron

detrapping is accelerated. In an untapered wiggler, on the other hand,

particle detrapping is not so important for the main signal efficiency.

The total extraction efficiency may actually increase with the sidebands

since there are more modes to channel the electron beam energy into.

4



The remainder of this paper is organized as follows. In Sec. II

we construct our analytic model for the study of the stochastic

diffusion and discuss the various approximations. To elucidate the

analysis we start with a single sideband mode and give a sketchy

description of how this can lead to electron detrapping. In Sec. III we

examine the structure of the phase space for a monochromatic sideband in

detail, using canonical formalism. The threshold for the stochastic

transition and the extent of the chaotic regime in phase space are

obtained in Sec. IV. In Sec. V the diffusion rate caused by a single

sideband mode is examined in connection with the various FEL parameters.

In Sec. VI the study is extended to broad (multifrequency) sideband

spectra. A distinction is drawn between continuous and discrete spectra.

Subsection VI.a covers the case of a broad discrete spectrum and the

related diffusion coefficient. Subsection VI.b deals with a broad

continuous spectrum and the corresponding quasilinear diffusion

coefficient. In Sec. VII the theoretical models are compared with

numerical results. The differences in the induced diffusion rates among

the three different types of spectra are emphasized. The reduction in

the extraction efficiency in a tapered wiggler FEL is computed as a

function of the diffusion coefficient. Results and conclusions are

summarized in Sec. VIII.



II. GENERAL CONSIDERATIONS

We consider relativistic electrons streaming along the z-

direction through the static magnetic wiggler and the radiation fields

of the carrier and the sideband. We take all fields to be circularly

polarized and of constant amplitude. To simplify the analysis and make

the underlying ideas clearer we start out with monochromatic waves for

the carrier and the sideband. The total vector potential is then,

A (z,t) =

(1)

•w (e~ )ri(krZ-Wr t) l(ksZ-Wst)] -c'-[(ex-iey)AweZ% _+V-(ex+iey)Are ikrzwr _) (ex+iey)Ase ]~ -wst + cc

where the subscripts w, r, and s stand for wiggler, carrier and sideband

respectively. We assume that all waves propagate with the speed of light

c, ignoring the small correction of order w 2/W 2 from the dielectric

contribution of the beam. Electrostatic contributions to the fields are

neglected for operation in the Compton regime. The phase of the wiggler

is given by +w(z) = fz kw(Z,)dz,, where the wave number kw(z) may change

slowly in z on a scale length much longer than the wiggler wavelength Xw

= 2 n/kw . The main signal wave number kr is doubly Doppler upshifted from

the wiggler wavenumber kwt

kr= 2Y k , (2)

with the upshifting factor yz = (1 - r )- 1 / 2 and 0r = Wr/c(kr+kw ).

We have ignored variations in the x- and y-directions. Increased

number of dimensions is known to facilitate the transition to chaotic
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motion. r'erefore, the threshold for stochasticity for variations in the

z-direction only will be useful in providing a neccessary condition to

avoid fast large-scale diffusion. Slow diffusion due to higher

dimensionality will in fact persist for the real system below this

threshold. As far as particle detrapping is concerned, three dimensional

effects are comparatively insignificant, provided that the dependence on

x and y is adiabatic. This requires that the frequency of the betatron

oscillation, caused by the transverse field gradients 1 5 , be small

compared to the electron synchrotron frequency in the ponderomotive

bucket.

We have also assumed that the radiation amplitudes remain

constant. In case of fast growth rate of the carrier amplitude the

particle trajectories are not analytically tractable, even in the

absence of sidebands. It is generally expected that the fraction of

trapped particles decreases with decreasing carrier amplitude. Therefore
the spreading of the radiation beam due to diffraction16,17 can also

cause detrapping by reducing the carrier amplitude a . This detrapping

mechanism is independent of the diffusive detrapping caused by sidebands

that is examined here.

Normalizing the time t to wr ,the length z to kr 
1 , the mass to

me and the vector potentials according to ai=IeIAi/mec2 the

dimensionless Hamiltonian describing the electron motion in the fields

of Eq. (1) is,

H = + 2 2A a a cos(* + k z - w t) - 2A aw a scos(+w + k z - t)

(3)
2 2 2 2

-J2 1 + M(a + ar + a

7
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with M = 1 and A = 1. Eq. (3) also describes the fast-time averaged

Hamiltonian for a linearly polarized wiggler by setting H = 1/2,

A = [Jo(Q) - Jl()]/2 and C = aw2/(4 + 2aw2).

The terms proportional to awar and awas are the ponderomotive

potentials due to the combined action of the wiggler with the main

signal and the sideband respectively. The resonant velocities for each

ponderomotive potential are given by = ki/(ki + kw) corresponding to

resonant energies,

2 1/2

Yi= _ i2) , i = r, s. (4)

In the vicinity of yi the motion of the electrons is determined

by the corresponding resonant term inside (3). We may drop the

nonresonant term for small radiation amplitudes and linearize (3) for

small excursions Sy around yi. From the resulting pendulum equation we

find that trapped electrons will undergo oscillations of frequency %

around yi, forming islands of width Syi in phase space, where w and Syi

are given by,

1 2)1/2 a )1/2
-b = i2 (a a i 2 V , 6yi = Iri  2 (5)

We call these islands, due to the direct wave-particle resonances,

primary islands.

Roughly speaking, irregular motion breaks out as a result of

14
nearby Island overlapping . The amplitudes ar, a must increase to the

point where,

6Yr + 6y s  I -" YSI (6)

8



for an overlapping between the two primary islands to take place. The
2

difference in resonant energies y = yr - Ys is given by Ay = Yzr 2

where 60 = los - Orl = (1/2yz2 )Ikr-ksI/kr Given that typically k s-k r

2yz 2b we find,

1/2
Ay ~ Yr(awa d (7)

It then follows from (5) to (7) that overlapping and transition to

chaotic behavior can take place at a - a . This crude estimates r

demonstrates the potential of chaotic behavior for large amplitude

sidebands. The above threshold becomes even smaller in case of a

multifrequency sideband spectrum.

We will be interested in evaluating the fraction of the phase

space that becomes chaotic as a function of the sideband amplitude. This

requires the use of a more refined overlapping criterion. Electrons

trapped inside the primary island of the main signal still experience

perturbations in their motion caused by the sideband. The perturbation

is especially felt by these electrons that have the synchrotron

frequency Ob matching the difference between the frequencies of the main

signal and the sideband. This condition defines new secondary resonances

between the electrons and the sideband. It is the overlapping among the

nearby secondary islands, formed inside the primary island, that

determines more accurately the break out and extent of the stochastic

behavior.

9



III. PORTRAIT OF THE PHASE SPACE

The electrons are injected into a FEL with energies near the

resonant energy yr for the main signal wr" Expression (3) can be

linearized for small excursions &y/yr << 1 for electrons not too far

from the separatrix. Introducing i = y - yr and * = (kw + kr )z - wr t as

a new pair of canonical variables and approximating the time

t(z) = z/c3r we obtain,

k w ~2  awar a as
H(y,*;z) = Y + -(cos* + * sinr) + -- Cos(* - Z).

Yr Y r Yr

(8)

In (8) the phase flow is parametrized by the traveled length z inside

the wiggler rather than the time t. It was also assumed that the wiggler

parameters change slowly compared to the wiggler wavelength 2n/k w . The

term sin* r parametrizes the rate of change for the resonant energy

caused by the change in the wiggler wavelength,

dkraarsn
d---w-r sin* ,(9)

where * r = n corresponds to an untapered wiggler. The term 6s in the

sideband phase is the Doppler downshifted difference between the signal

and the sideband wave numbers,

k
= - ( k k (10)

r

10



In the absence of sidebands, a = 0, the Hamiltonian H is, S 0

integrable. The unperturbeu trajectories in the ponderomotive well are

given by H0 (y,4) = K where K is the reduced energy in the ponderomotive

frame. These orbits take the simplest possible form expressed in terms

of the action-angle variables (J, 8), defined as,

= ~m~d y(K,W), E = -JdW y(K, ) (11)

where K = H0 (J) and the path of integration is over the unperturbed

orbits. For trapped particles in closed trajectories, the action J is

related to the area in phase space enclosed by the orbit. For untrapped

particles in open trajectories, the path of integration in Eq. (11)

depends on the wiggler type. In case of an untapered wiggler, the orbits

are periodic and the limits of * integration are from 0 to 2n. In case

of a tapered wiggler the path of integration is the segment of the

trajectory that begins and ends at * = *s , enclosing the separatrix.

Thus, J remains finite, avoiding an infinite jump in action across the

separatrix that would result by considering the full orbit length for

unbound orbits 18 . J is always periodic in *, J(i,,* 1 ) = J(,* 2 ) for 1=

*2 + 2n, even when H is not (case of tapered wiggler).

Hamiltonian (8) is now transformed under the canonical

transformation defined by Eq. (11) into,

a a
H(J,e;z) = H (J) + w a E (J) cos(n8 + 6 z) + (J) cos(ne - 6 z).

0 Yr n = s n s

(12)

Qn + (J) are the Fourier coefficients obtained by the decomposition of the

perturbing sideband phase *(J,O) - 6sz into harmonics of the angle e,
5I



where q(J, O) is obtained by inverting Eq. (11). In case of constant

parameter wiggler J, e and 0n (J) are expressed in closed forms given in

Appendix A.

0 (J) is independent of e so the unperturbed orbits in (J, e)

space are straight lines,

J = const., e = 0 + Kb(J)z

The synchrotron wave number Kb(J) is connected to the bounce length Lb

and the synchrotron frequency in the laboratory frame b(J) with the

relation,

dHo(J) 2n (b(J)K b(J) ....- (13)

dJ Lb(J) cgz

Since c = 1 in the normalized units and Oz = 1 in the cases of interest,

we may use wb(J) in place of Kb(J) as well.

Expression (12) for the transformed Hamiltonian reveals the new

resonances emerging when a sideband is turned on. Defining the phase of

the nth sideband induced harmonic e(n) = ne ± 6sz, the stationary phase

condition reads,

nKb(J) - Ss = 0, or ±n3zwb(J) - = . (14)

Thus, particles, originally in unperturbed orbits J = Jn, resonate with

the sideband when the nth harmonic of their synchrotron period Wb(Jn)

matches the downshifted frequency difference between the sideband and

the carrier signal.

12



For a given n and sufficiently small as we may keep only the

resonant term e(n) to examine the motion in the vicinity of J n This is

formally achieved by the canonical transformation,

e=ne- 8 z , I = 1J ,s n

(15)1 1 ,
Z = z, I - K + J

s

coming from the generating function F(e,z,I,Iz) = (ne - z)I - zI . The

resulting Hamiltonian is,

awas 2
Hn (I, IZ,e,Z) = Ho(nI) + &s(Iz - I) + _ n (nI) cose + O(a )

' Yr

(16)

The fixed points (J n , en ) are found from,

aH a
d8aH n -8 (17a)jdZ- TI- =- Is=0

dM a a a s 0 n(nI) sine = 0. (17b)

Using relations (15) for the transformed variables we recover from (17a)

the resonant condition (14) while (17b) indicates en kn / n, k =

0,I,....,n-1.

In short, a single frequency sideband causes chains of secondary

islands to appear inside the original primary island. Each chain

corresponds to a given harmonic n and is centered around the stable

fixed points Jn' en . The structure of the phase space is shown in Figs.

1 and 2. They are surfaces of section, created by numerically

13



integrating the original equations of motion from Hamiltonian Eq. (8)

and then recording the intersection point of each trajectory with the

plane z = 2n/8s . The y vs. * plots are on the left side in Figs. 1 and

2. The plots on the right side show the same surfaces of section in

action-angle variables, produced by the transformations (11). The bounce

frequency around a given secondary island is found by linearly expanding

the resonant Hamiltonian (16) in 61 = I - I . From the resulting

pendulum equation and from relations (15) one finds that the secondary

synchrotron period 2n near the center is given by,

n [WT() J O( Yr 1/nia

n

while the half-width of the island &J is
n

&n [2 awas 0n(Jn) 1/2 (18b)
n (db/dJ) IJ

n

Representation (12) for the Hamiltonian (8) is formally independent on

the details of the transformations (11). Consequently, the same

stability analysis applies for constant as well as variable parameter

wigglers.

14



IV. THRESHOLD FOR ERRATIC MOTION

When the sideband amplitude exceeds a certain amplitude a

regarded as the stochasticity threshold, the presence of even one

sideband frequency suffices to transform the regular coherent motion,

such as in Fig. 1, to the irregular unbounded motion shown in Fig. 2.

The mechanism for this radical change in behavior can be briefly

described as follows. The trajectories emanating from the unstable fixed

points (X-points) of a secondary island do not actually join smoothly

around that island. They intersect infinite times with each other
1 2'1 3

due to the effect of the other harmonics n' * n that were ignored during

the local approximation Eq. (16). A thin layer of fuzzy motion thus

surrounds each island chain of given n. As the amplitude as increases,

the width of each island increases according to (18b) and so does the

thickness of the stochastic layer around that island. At a given point

the stochastic layers around the two neighboring island chains n and n+1

overlap 14 , allowing particles to hop from one island to another. This

signifies the beginning of unbounded, random motion in J characterized

as stochastic diffusion.

Various methods of different accuracy have been developed for

estimating the stochasticity threshold 12'14. An approximate criterion

that works well in most cases is,

U n + UJn+1 > n , (19)

where &Jn, 8J n+1 are the separatrix half-widths and t n = J n+ - Jn is

the distance between the separatrix centers for the n and n+l harmonics

respectively. For small widths 6 and distances &J compared to J we may

expand

15



(-%) wb(Jn )

b(Jn+l) - bo(Jn) = &- n-- (20)

n

and use (18b) with J n+1 = in to obtain the amplitude as (n) for

overlapping

2 b(J n Yr

asn 3 (n)2(dwb/dJ)j 2aw Qn(Jn)).(

n

The outermost islands centered at Jn = is, correspond to larger shear

dwb(J)/dJ , smaller ib(J) and higher harmonics n, for given os - wr .

According to (21) the threshold a s(n) is lower near the separatrix and

the outermost secondary islands will be the first to overlap. The

overlapping is progressively extending to smaller Jn and lower n as as

increases. The macroscopic stochastic layer first appears near the

original separatrix of the primary island and spreads to the interior of

the trapped particle bucket. We take the amplitude when the two

innermost harmonics overlap as the threshold for "global" stochastic

transition, os a as(n1 ). The lowest possible harmonic n1 for given

frequency ws is defined by the resonant condition (14). For Jn small we

have both &J and &J of order J and the approximations that led to (21)

are not valid. In this case, the exact expressions for J and wb(J) must

be applied inside the criterion (19).

We may obtain the dependence of a s(n) on the various parameters

using Eqs. (A4) and (A7), setting d/dJ = (dXldJ) d/dX and utilizing the

properties of the elliptic integrals to compute the derivatives in Eq.

(21). We find that,

-L6



as(n) 1 2

a - 2 F (Xn) (22)
r n

where

F(X E 1{ E (Xn) Xn2 (X
2 _ }1/2 ( 2Qn0Xn) 1/

n) E2 (X n ) - (1 - X n2) E1(Xn) n n

The threshold for extensive stochasticity os s as(n 1 ) is independent of

y and aw . The trapping parameter X is determined uniquely from Jn

according to Xn  H (Jn )y r/aw a r + 1/2 (see Appendix A). Thus, the

sideband frequency ws , related to b(Jn) through the resonant condition

(14), is the only parameter that as/ar depends on. The scaling in (22)

is still valid in case of large secondary island width with a

modification in the numerical factor F.

In Fig. 3a we plot in solid line the threshold as for extensive

stochasticity, when the two innermost secondary island chains overlap,

as a function of the frequency difference wr - wr . The dotted line shows

the threshold for overlapping between the next two secondary island

chains. Some deeply trapped orbits, near the center of the original

primary island, still persist when as is close to cs The extent of the

area unaffected by the irregular motion when as  is given

approximately by J < Jc where Jc = Jn - n In Fig. 3b we plot the

portion J c/Js of the remaining "good" trajectories when the sideband

amplitude equals os as a function of ws - Wr" It is-seen that the

threshold o is larger and the extent of the stochastic regime is

maximized as well for frequency mismatch near a harmonic of the

synchrotron frequency wb(O) at the bottom of the ponderomotive well.
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The tiaeshold ot for overlapping is considerably lower but the extent ofs

the stochastic regime also diminishes for frequencies far from a

harmonic of the central synchrotron frequency.

A typical phase portrait for a sideband amplitude as slightly

above o is shown in Fig. 2b. Two different kinds of regions coexist: a

stochastic regime where diffusive behavior prevails, interrupted here

and there by islands of regular motion, remnants of the original regular

motion. The stochastic regimes are interconnected allowing unbounded

particle transport. The rate of diffusion as well as the decorrelation

times are not uniform in phase space but depend on both J and 0.

When as is increased well above a s the chaotic motion engulfs

almost 100% of the phase space (Fig. 2c). The decorrelation time is

short everywhere in phase space. In this parameter regime the behavior

of the system can be described by a diffusion coefficient D(J) depending

on the action J only and insensitive to the frequency of the driving

sideband. Total stochastization of the island interior occurs roughly

when the sideband amplitude grows to the point where the stable fixed

point j = 0, ' = n + * r at the center of the original island becomes

unstable.
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V. NARROW FREQUENCY BAND DIFFUSION

We will examine first the diffusion caused by the presence of one

single frequency, large amplitude sideband. This is a relevant

approximation in case of a narrow sideband spectrum. The term narrow

implies a spectral width Dws much smaller than the frequency separation

Ws - 0' r' typically of the order 2yz 2b . We examine the evolution of a

monoenergetic distribution f(J;z=O) = 8(J - J0 ) by numerically

integrating the equations of motion. We plot <&J 2>, <J> and 2 <&J 2>/z

against the distance z in Figs. 4a, 4b, and 4c respectively. The

electrons are initially uniformly distributed in 0 with constant action

J = 0.7 J s . Different curves in the same frame correspond to different

sideband amplitudes as at a given frequency s.

For a constant diffusion coefficient D, independent of J, the

average <J> and the mean square deviation <&J 2> = <j 2> - <J>2 would

evolve as <J 2> = (1/2) D z, <J> = J0. The dashed curves in Figs. 4a -

4c correspond to a sideband amplitude as below the stochasticity

threshold c . The deviation <&j2> asymtotes to a constant after an

initial increase while the ratio <&J 2>/z tends to zero for large z. In

this case stochasticity is localized. Different stochastic regimes are

still separated by "good" integrable orbits (KAM surfaces) located in

between. Electrons diffuse until they are stopped at the boundaries of

the stochastic regimes that "compartmentalize" the phase space. The

solid curves in Figs. 4a - 4c correspond to sideband amplitude above the

global stochasticity threshold a . This means that the last good orbit

has been destroyed allowing different stochastic regimes to

interconnect. <&J2> now increases monotonically and the ratio <Aj2>/z

remains finite for large z. The fact that the diffusion rate is not
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constant, and that the average <J> changes away from the initial value

J , shows that D depends strongly on J.

In principle, one could determine a local D(J) by advancing test

distributions 6(J-J 0 ) of various J over short distances z. Then the

Fokker-Planck equation for any initial distribution f0 (J) could be

solved numerically using D(J). Here, instead, we elect to measure

directly the effective diffusion rate associated with a given type of

initial distribution. We do so by integrating numerically the equations

of motion, Hamiltonian (8), for a number of particles (typically 400)

assuming constant amplitude for the electromagnetic fields. A uniform

initial distribution in phase space with trapped particles inside the

(unperturbed) separatrix is chosen, f (J) = [1 - S(J - J s)]/J s where S

is the step function. This situation is relevant with the operation of

tapered wiggler FELs where the trapped particles in the ponderomotive

bucket are decelerating, falling quickly behind the untrapped particles

and thus creating large distribution gradients near the separatrix.

The two questions of practical interest are (a) what percentage

of the particles will eventually get detrapped and (b) how fast do they

leak outside the separatrix. For our uniform initial distribution the

maximum fraction of particles becoming detrapped equals the fraction of

the inside of the separatrix area that becomes chaotic. In Fig. 5a we

plot the fraction fd of the particles that cross the original separatrix

J as a function of the traveled wiggler length for values of q = as/ar

below the threshold for extended stochasticity. In all cases an initial

stage of quick diffusion is followed by a long period where the average

number of untrapped particles remains practically constant. The results

are consistent with the existence of a boundary in phase space (KAM

surface) separating two regires: the one of unbounded, chaotic motion
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from the one filled with regular, coherent orbits of particles that

remain trapped. Only electrons in the area between the last integrable

surface and the old unperturbed separatrix will diffuse until that area

is depleted. A fraction 1 - fd of the original primary island area will

remain trapped for an arbitrarily long time, as long as as remains below

the threshold a associated with the particular sideband frequency. This

fraction is shrinking as a increases and the bucket "peels off". The

situation when a exceeds a is shown in Fig. 5b. The fraction of

untrapped particles fd reaches 1 in all cases, meaning complete absence

of particle confinement in the bucket. All particles can eventually

escape with a rate that increases with increasing as .

Numerical results showing the fraction of detrapped particles fd

after 100 wiggler periods as a function of as/a r are plotted in Fig. 6

for various sideband frequencies 1)s - WrI. The length over which

approximately half of the initially trapped particles get detrapped will

be discussed in the next section, in comparison with the diffusion rates

from other types of sideband spectra.
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VI. BROAD FREQUENCY BAND DIFFUSION

So far stochastic electron detrapping caused by a single

frequency sideband has been examined. It was argued that when the

excited sideband spectrum is narrow enough, i.e., Dws << 2yz2 b, the

situation can be reasonably approximated by a single frequency sideband.

Here, we consider the situation when a broad spectrum of frequencies

have been excited, Dw s > 2yz2 b . We will make a distinction between a

continuous and a discrete spectrum. In case of a discrete spectrum the

distance between two nearby sideband frequencies is much larger than the

width of an individual spectral line. In the opposite case, when various

peaks in the spectrum merge together, we will talk about a continuous

spectrum. We may model numerically both cases by introducing a

modulation in the sideband phase of Hamiltonian Eq. (11),

k w~2  awar awas
H(y,q,;z) = - y + - (cosP + * sin*r) + -----cos(* + A sin jz - 6 z)Yr Yr r Yr s

(23)

that is transformed in action-angle variables as

H(J,e;z) H 0H(J) + H1(J,O;z),

H1(Je;z) (24)

aa 0
ws =- J(A) E= Q(J) cosine + 6 (m)zj + Q(J) cosine - 6 (m)zj.

_rm= n=O n s nl S

The frequency mismatch values 6s(m) and the corresponding sideband

frequencies w (m) are given by,
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s (m) = 0 + m V, s(m) = w + 2 m z '  (25)

where w so = w r + 2yz 26  Since the Bessel function coefficients become

vanishingly small, J m(A) << 1 for A > m, the width of the spectrum is

given by D s -A v or D s = 2 y Av.

In order to examine the connection between diffusion rates and

the types of the sideband spectra, we divide the latter into three

general categories: narrow, broad discrete and broad continuous. The

passage from one regime to the other is not gradual but characterized by

abrupt changes in the diffusion coefficients. Thus, from the diffusion

point of view, the distinction among the spectral types is not arbitrary

but based on certain relations between the parameters A and v. In all

three regimes of the parameter space the rate of diffusion is

proportional to the ratio of the total sideband power to the carrier

power. The scaling of the coefficients of this proportionality on the

various FEL parameters, however, differs from one regime to the other.

Both cases of the broad spectrum are characterized by a width DWS

in the excited frequencies that is larger than the upshlfted synchrotron

frequency Cb,

D s > 2 z 2b , equivalent to v > -- , (26)

with A >> 1. The further distinction between discrete or continuous

spectrum is related to the separation between nearby frequencies. We

find that when (%/A1/ 2 > V > wb/A the diffusion rate agrees well with

the quasilinear diffusion coefficient. A ditferent coefficient is

derived for the case when v > Cb/A 1/ 2 > b/A, in agreement with the

numerical simulations. Consequenity the separation cb/A 1 / 2 between
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nearby modes marks the transition from a discrete to a continuous type

of behavior. Departure from the quasilinear diffusion coefficient has

also been observed numerically in previous literature19  when the

frequency separation between nearby modes was not "small enough". Here a

condition for the discrete-to-continuous transition has beeen obtained.

For any spectral type, the sideband amplitude must be above the

stochastisity threshold in order to trigger electron diffusion. Using

the same method of nearby resonance overlapping as in Sec. III, and the

Hamiltonian Eq. (25) we find that the threshold in case of a

multifrequency spectrum is given by,

(s - wbVJm(A) 's (27)

where s is the threshold for the single sideband frequency. Thus s

decreases with decreasing frequency separation v. Condition (27)

guarantees the stochastization of the particle orbits. The frequency

separation among sidebands must be limited by the additional condition v

< wb/A 1 / 2 , as stated in the previous paragraph, if one wishes to

simulate quasilinear diffusion with a discrete spectrum.

A. Broad Discrete Spectrum.

We now evaluate the diffusion coefficient for a broad, discrete

spectrum. The equation of motion for J can be written as,

dJ aH1  aH1 d* aa z)

_ _-_ ^ w. ___s sin H' + A sinvz - sz IV(wm×)- V(J)I"/
dz a0 @I2 dO Yr
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using Eq. (A2) for d,/de. Due to the presence of many frequencies in the

spectrum J(z) executes a complicated oscillatory motion with the average

< J > changing very little most of the time. J however receives a large

kick &J near resonances, where the phase 0 = * + A sin vz - 6 z of the

multifrequency perturbation H varies slowly. The resonant condition is,

dt k + A v sin vz -6 =0, (28)
dz - r s

at some z =z i . Given that kwW/r - b, collective effects due to many

frequencies are important for the resonance in Eq. (28) when A V > Wb.

On this basis inequality (27) signifies the transition from a narrow to

a broad spectrum. Let us consider the case A v >> %. Then the

resonances occur at zi  = in/v, i integer, and the interval between

successive resonances is Az = n/v. Expanding the phase #(z) in the

equation of motion for J around the resonance zi,

O(Z) = 0 + i. 2 si + sin,* + A v2 Csvz J (z _ zi) 2, (29)

and extending the limits of integration to z = ±® we obtain,

a~ _aa r  2n )1/2 cos (0n±+ Iv(*mx)-_V(*i)1 1/ 2  (0

DJ i w r _ /2 co n 4 ) I(~ 1/2 (30)
Yr ((sin* + sin*)+ A (V))"

where *mx(J) is the turning point for an unperturbed trajectory of given

J. When A v2 >> 2 both 6z and &J depend on the features v and A of the

sideband spectrum and not on the bounce frequency %. We classify the

cases with frequency separation v > wb/A 1 / 2 as broad discrete spectra.

They obey a distinct scaling in the diffusion coefficient that will be
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derived below. We find the cases with v < w/A I1 2 to agree numerically

with the quasilinear diffusion that will be studied in the next

subsection.

The resonant phases 4. between two successive jumps of W become1

quickly decorrelated when as grows above the stochastisity threshold.

Because the relation between 4. and * i involves the distance zi, *i and

*i will also become decorrelated, <cost i cos*i> = 0. Assuming complete

decorrelation between two successive jumps we obtain,

2 <&J > 2 a 
2a 2

D Dz - wA < IV(*mx) - v(*i) I >, (31)

where the angular brackets <...> signify the average over for

constant J. For practical purposes it is more convenient to rescale the

diffusion coefficient so that the distance z = z/X is measured in terms-- V

of wiggler wavelengths and the action J = JIJ5 signifies the location

relative to the separatrix. In these units, using Eq. (A4) for Js and

setting v / (%(0) = r we obtain,

2n r3 g2<i aa 1/2 a2

D 2n D 2 R 2 (32)
V kw j2 8 Ar a1a a

s w r

The term g is a scaling factor, the ratio of the separatrix area for an

untapered wiggler to that of a tapered wiggler, g = Js (r=,n)/J(4 r), and
1

depends only on *r " The term C - 1, coming from the averaging over *i

in Eq. (31), is computed in Appendix B. The typical diffusion length Ld,

the traveled distance inside the wiggler over which the average trapped

particle crosses the separatrix, is estimated from the diffusion Eq.

26



(22) by taking <&J2> = Js Ld - i 2/D%. Thus, the diffusion length in

wiggler periods Nd = Ld/Aw is the inverse of Dw_

1

Nd D (33)
d _DV

B. Broad Continuous Spectrum

Next we consider the case of a sideband wave package,

1tik z - ic(k s)t
a = dksas(ks) e s

of finite spectral width Dks  centered around k so. Our purpose is to

obtain the diffusion coefficient for a continuous spectrum using the

methods of the quasilinear theory. Upon using exression (34) for the

fields, the Hamiltonian representation in action-angle variables assumes

the form,

H(J,O;z) = H (J) + -- E (J) dksas(k s ) cos [ne ± 6(ks )z] , (35)0 r n=O

where 6(ks ) is given by,

6k 0k w + v(ks ) c v(kr) k

(k)= o +(ks- so) k-r k (36)

and 6so = (kw/kr )(kso - kr) in the spirit of Eq. (10). The last

parenthesis in the right-hand side of (36) is of order (wp /wr)2

resulting from the dispersive effects in the sideband spectrum. The
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finite k w provides phase slippage among the ponderomotive phases of

various wavenumbers ks, a necessary condition for the validity of the

quasilinear theory, even when the dispersive effects of the last term in

(36) are negligible, i.e., yz 2W/d << Dks ks

The resonant condition between a sideband wavelength ks and a

given harmonic n now reads +nb(Jn) = 6(ks). For each harmonic n there

exists a wide band of resonant orbits centered around J and of widthno

DJ defined by,n

DJn = (dQ b/dJ)Jno-  (kw/kr) Dkso ±nwb(Jno) = &so' (37)

One condition for the applicability of the quasilinear theory is

that the phase mixing due to Dk5  occurs much faster than the bounce

period around a secondary island in phase space. In this way, electrons,

that otherwise would execute periodic orbits around some fixed point,

lose coherence sufficiently fast to allow random motion of the Fokker-

Planck type. Taking the decorrelation length for the phase 1d ~

2n/D6(ks ) and applying Eq. (18a) for the bounce period around the nth

harmonic we obtain

1/21/

Dk n 1 rAawa  1

k>> - 1 21 (38)
s 2 '12 + a)

Inequality (38) guarantees the diffusive behavior within the band DJn

around Jno given by (37). Large scale diffusion, permitting transport of

deeply trapped particles across the separatrix Js of the original

primary island, requires that different stochastic bands touch each

other, DJn + DJn+ 1 > &jn' or, using a similar approach as in Eqs. (19)

and (20),
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1/2

Dk s > 1 n (39)
s - 2"n rvr
s 8n 2 1 + a

The right-hand sides of Eqs. (38) and (39) are of the same order as the

upshifted synchrotron period for the main bucket. Thus both conditions

are satisfied when,

Dk Kb(0)

- > 2O- (40)
r

Note that (40) is the same as the condition (26) that defines the wide

spectrum, obtained in the previous subsection using different arguments.

Then the evolution of the initial distribution f (J) is globally

described by a diffusion equation,

af a D(J) f

az - J q • (41)

Applying the standard procedures of the quasilinear theory2 0'2 1 (see

appendix C) and taking the limit of small growth rate for the sidebands,

Im(k s)/k s << 1, we obtain,

k k a 2O
D - Ek r r 2 E n 2 IQn±(J) Idkss(ks) 8(k - k n),

4 w 2s n=O

(42)
k

k = k + -E Kn(3)n r k1  bw

According to the condition (40) for the validity of the quasilinear
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theory, the wave package has a wide spectrum Dks - N(kr/kw)wb(O) with N

large. The wave components as(kn) fall off slowly for n < N while the

Fourier coefficients On (J) decay rapidly with n. Then we may factor out

the average spectral power density W. = (l/Dks )f dkS Ws(k) a s2/Dks in

Eq. (34) getting,

2
kk a 2 2D q(J) - k 2 w n2 n(43

4 kw Yr n=O

The infinite sum in the right-hand side of (43) is computed in Appendix

C. The summation technique does not require the knowledge of the

individual coefficients 0 n(J) and the result depends only on the

quantities J and %(J) for the unperturbed Hamiltonian Ho(J). We then

obtain the diffusion coefficient in closed form,

ka2 2Wk

kr aw Yz s kw J (44)
Yr 3%(J)

We note in passing that the method used to obtain expression (44) for

D q(J) is quite general and valid for any integrable dynamical system

H (J) that is subject to an external perturbation. In particular, it

should be applicable to a variety of RF heating methods in fusion

plasmas, commonly involving a strong, narrow-band pump wave embedded in

a wide, parametrically excited, fluctuation spectrum.

Using the expressions (A3) and (A7) for the action J and the

synchrotron frequency wb(J) we find that the diffusion coefficient goes

to zero at the centre of the primary island J = 0, has a logarithmic

singularity at the separatrix J = Js and falls off away from it. In
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normalized units, with the wiggler wavelength Xv as the unit length and

the action Js at the separatrix as the unit action, we have,

()-2n D q(J)

Dq ---- (45)

s

Choosing the value J = Js/2 inside D q(J) we obtain an estimate for the

effective diffusion coefficient associated with the uniformly filled

distribution,

2
nlg aa a

2 2 w (46)-q 4 A (l+a ) Dk aDk r

where g is the same scaling factor as in Eq. (32).

Note that both expressions (32) and (46), corresponding to the

two different spectral types, are independent of yr" Thus, for the same

wiggler parameters and total sideband power, the detrapping distance in

wiggler periods is independent of the electron beam energy. The

dependence of the effective diffusion rate on the wiggler tapering

enters through the form factor g(*r) = is ()/J(*r). As the rate of

tapering increases and * r shifts further from n, g inreases and

accelerates the effective diffusion rate. This happens because the

trapped area in phase space, parametrized by Js, is shrinking as the

tapering progresses, while the sideband induced excursions remain the

same, depending mainly on the sideband strength and spectrum. This
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shortens the average detrapping time for a particle. The diffusion by

broad discrete spectrum, Eq. (32) scales as g 2 , while the quasilinear

diffusion, Eq. (46), scales as g. Thus the former is affected more by

tapering than the latter.
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VII. NUMERICAL RESULTS

The numerically computed diffusion coefficient D and the

diffusion length in wiggler periods Nd = 1/D are plotted against the

2 2
sideband to carrier power ratio P = Z a (w )/a = Hs/W in Figs. 7 and

n s n r s r

8 respectively for the three different types of spectra. We have

integrated numerically the equations of motion for 400 particles of a

uniform initial distribution inside the bucket. The field intensities

remained constant at ar = 5x10
- 5 , aw = 2 and yr = 25. All the numerical

results in this paper correspond to a tapered wiggler with *r = 7n/6. A

clear separation in the diffusion rates is observed among the various

spectral types. The narrow frequency results (triangles) were obtained

using the Hamiltonian (8) with a single sideband frequency ws/wr =

1.016. The results for a broad discrete spectrum (circles) were obtained

using (23) with A = 20, ws/wr = 1.016 and v = 0.5 6 s . The continuous

spectrum (squares) was modeled by A = 100, v = 0.05 6s . The solid lines,

corresponding to the theoretical results of Eqs. (32) and (46), are in

good agreement with the numerics. Theoretical predictions for the single

frequency case were not made. We stress, hovever, the difference between

single frequency results and quasilinear theory in this case. The
22

agreement that has been observed in some other cases is not generic

but particular to certain systems.

Figure 9 illustrates the difference of the electron response to

different sideband spectra. The plots on the left side are typical

orbits J(z) for selected particles along the wiggler. The trajectories

in all plots are generated by the same initial conditions for the

electrons and the same FEL parameters aw, ar and kw, as well as the same

mean square sideband power <as 2>. The spectral parameters A and v,
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however, are different so that each of the figures (a) to (c)

corresponds to one of the three spectral types defined earlier. The

dashed line marks the position of the unperturbed separatrix J . The

corresponding distribution functions f(J,z) at the beginning, z = 0,

halfway inside, z = 50Xw, and at the end, z = 100Xw of the wiggler are

plotted in the right-hand side of Figs. 9a-9c respectively.

In Fig. 10 we plot the diffusion coefficient for a uniformly

filled bucket as a function of the energy yr' fixing the wiggler

parameters. It is clear that the diffusion rate (measured again in

number of wiggler periods) is independent of the beam energy, provided

the synchrotron frequency ob stays in the same parameter regime.

Once the diffusion coefficients are known, some estimate can be

made of the related reduction in efficiency over the wiggler length. The

number of trapped particles at any point z is given by

nb fs dJ f(J,z). Using the diffusion Eq. (41) with D(J=O) = 0

one obtains the rate of change in the number of trapped particles,

dnb af(JsZ)
dz = nb(z) D(J S ) (47)

8z

The leakage rate for trapped particles changes along z as the slope of

the distribution f(J,z) changes. To estimate the average leakage rate we

assume that f(J,z) remains Gaussian in J with an average width equal to

the separatrix action J We estimate from (47) the e-folding length
-1

Ld = - nb (dnb/dz) for the number nb of trapped particles,

Ld -D(Js) s (48)
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Assuming that nb(z) = nb(O) exp(-z/Ld), the number of detrapped

particles between z and z + Az is Mn(z) = nb(O)Ld- 1 exp(-z/Ld) Az. These

particles gave up an amount of energy AE(z) = [y r(O) - Yr (z)J An(z) as

radiation. Integrating AE(z) over the wiggler length for a linearly

tapered wiggler y r(z) = Tr (0) - ztLy/Lw, we find the total energy

extracted from the particles that were detrapped at some point inside

the wiggler. Adding the contribution [yr(O) - yr (L w)] nb(L) from the

particles that remained trapped throughout the wiggler length, we come

up with,

Ld L
= exp (- L ) (49)

where 1° = AY/Yr (0) is the efficiency without induced diffusion. The

loss of amplification will, in general, be distributed among all the

radiation modes and (49) reflects the total power loss in all

frequencies. The extraction efficiency n for a linearly tapered wiggler

is plotted in Fig. 11 versus the sideband to carrier power ratio P,

obtaining the corresponding value for Ld/Lw from the results in Fig. 8.
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VIII. CONCLUSION

The diffusion in phase space caused by sideband excitation

during FEL operation was studied. It was shown that the characteristic

rates for this process depend on the structure of the sideband spectrum,

falling into one of the following general categories: narrow, wide

discrete or wide continuous spectrum. In all cases, the diffusion

coefficient was found proportional to the ratio of the total power in

the sidebands to the power in the main FEL signal D = C Ws /W r. The

coefficient C, however, is connected to the spectral type under

consideration. From Eqs. (32) and (46) we see that, apart from numerical
1

factors of order unity, C scales as (awar) with 1 = 1/2 for a discrete

and 1 = 1 for a continuous spectrum. Therefore, given the typical FEL

values of a < 10 and a < 10-3 an order of magnitude reduction in

diffusion occurs in the transition from a discrete to a continuous

sideband spectrum. It was also observed numerically that the highest

diffusion rate occurs when all the sideband power is in a single

frequency. In this case, however, a portion of the particles will remain

trapped for arbitrary long wigglers if the sideband amplitude is below

the threshold for extensive stochasticity. The stochasticity threshold

is progressively reduced as the sideband power is distributed into an

increasing number of frequencies. Yet the rate of diffusion also slows

down with increasing spectral width and decreasing mode separation.

Thus, the minimum reduction in the FEL energy extraction efficiency will

occur for continuous sideband spectra. Although control of the sideband

structure does not seem plausible, experiments show that a wide spectrum

is naturally excited during FEL operation. This would allow enough power

build-up before serious deterioration in efficiency, due to detrapping,
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to occur. The diffusion length, measured in wiggler periods, is

independent of the beam energy y under the same wiggler parameters, for

all the spectral types. Our results have been obtained for radiation

fields of constant amplitude. Inclusion of the time evolution for both

the carrier and the sidebands will modify the detrapping rates by

changing both the diffusion rate as well as the size of the separatrix.

This subject is left for future investigation.

ACKNOWLEDGEMENT

This work was supported by SDIO and managed by SDC.

37



APPENDIX A: TRANSFORMATIONS IN ACTION-ANGLE VARIABLES

The relations between y, *j and the action-angle variables J, e

are given in closed forms in case of an untapered wiggler. Starting from

the general expression (11) and using (8) we have,

*mx B o1/2 
( l

* VW

y r b~i y H o a v r -1/2

2k V JOd' 1  o k yr_ V( A2

where

VW4, = cos* + *sin* r)

Using H = (a wa s/Y d V(*r ) we obtain the action at the separatrix,

a 12 1 mx d~(()-()~1/2

r *mn

In case of an untapered wiggler * r =0 Eqs. (Al)-(A2) yield,

is (E2(X) - (1_X 2 )E,(X)) X2 < 1

~2J X E 2(2>

is= 4Aak] 1  (A4)
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sin (A5)

sn (I EI )e) , x2 > 1,

where E and E2 are the complete elliptic integrals of the first and second

kind, sn is the Jacobi elliptic sine function, and

\2 YrH°  1
+ - , (A6)

2a a 2
y r

is the trapping parameter ( X2 < 1 for trapped particles). Using Kb(J)

= (8J/aH 0 )- and (Al) we determine the bounce (synchrotron) frequency

Kb(O E , < I

Kb(J) = K 1(1/X) > (A7)

where

Kb (0) = (I awarkwkrj / , (A8)

is the bounce frequency at the bottom of the well. J and X2 are mutually

related through (A3) - (A6) and they uniquely label the trajectories.

The Fourier coefficients of the expansion (12) can also be

expressed in closed form. They are computed by integration in the

complex plane around the singularities, utilizing the double periodicity

properties of the Jacobi elliptic functions to obtain,

n
= -(±) n 2 q 2 'nE() 2

+ n nn -(-- ,q = (nEl(\) 1_(_q)n exp 1--fXJ, 1,

(A9)
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_ nn'2  n RE 1 (E(1/),))
On (1/X2 q 2nl q2~ q=exp X2(1> 1

for n 0 0 and,

+ E(X,) 2+2( E(1X
O±6=1 2< 1 O± 0 1 2X 2(1 2 /) 2 < 10 E 1M 0E 1(1/X)

where E(2) aE E (1 -X 2).

41



APPENDIX B : PHASE AVERAGING OVER CONSTANT J

The phase average < IV(*mx) - V(*i)l > over constant J is given,

for Pr = 0, by,

< ...... > =di I coSpmx(J) - cosqi(J,Oi) I2n

4, mx

dJ t I cos* x(J) - cos~ i I (B1)

Substituting de n/dw. from (A2) and using cos 
4mx = YrH(J)/awar one

obtains,

< ..... > d i  17 - k - Cos Ji
n a w ar,0 a war ww

=17 ( (x ( - J2)  , (B2)

where 2 was defined in (A6).
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APPENDIX C : COMPUTATION OF THE QUASILINEAR DIFFUSION COEFFICIENT

We consider the evoluti(i of the electron distribution in the

presence of a sideband wave package,

ik sz - iw(k s)t

as(zt) 1 dk k ) e , (C1)

of width Dk . The interaction Hamiltonian in action-angle variables,

derived in Sec. IV.(b) is,

a V

H(J,G;z) = H (J) + - +OE r dksas(ks) cos [nO ± 6(ks)Z ] .0 Yr m=.JO j n j

(C2)

The evolution of the distribution function f(J,e;z), under the

Hamiltonian flow,

de aH dJ aH
dz - J ' d -zaO (c3)

is given by,

af de af dJ af
a- dzae + dz3 J - 0 .

We separate the distribution f(J,e;z) into a slowly varying part f o(J;z)

= < f > and a fluctuating part gf(J,e;z) = f - < f >. The averaging

operator is defined by,

< f > L- f"

45



It is implied in the above definition that the characteristic length for

f0(J;z) is longer than the synchrotron length L = 2 n./Kb. We then obtain

from (C4),

af dO 8f +dJ af -dJ o a [ Lif <LJf> (5-z + jdz TO + dz J dz J 8J z dz

Lf L dJ >
- o - < dz " (C6)

Using Eqs. (C2) and (C3) inside Eq. (C5) and ignoring the last bracketed

term in the right-hand side we obtain,

aw n Qn+(J) as(ks) f _i[nO ± 6(ks) cf= _ E 1 dk s  _._oe + cc .2= r n=l n Kb(J) t 6(ks) 8a (07)

Substituting (07) in (C6) we have,

Fk[ dF%[ A [2 dOa2

a f - dks dq 2 Oaw
z o 2) 2n 2 2

x 0 im Q±( -a(qei [me + (q,)zJ + cc (C8)

n 0n+(J) as(ks) afo eifne ± 6(kE- -- ln (s) +  cc] ,

n Kb(J) ± (ks) 3J

where again 6(k s) = (kw/k r)[(k s-k r)+iE, c = Im(k s). Integration of the

right-hand side of (C8) over 0 yields,

S. 2 n  
2  * (q ) a (k ) +[6* (q) - 6(k s )z

0 2n =0  n Kb(J) ± 6(k,)

(09)
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Spatial integration yields

k

* a (ks) ±- [(qs- ks) + 2 i v]z

La(q ) e r 2n W(q s,z) 6(q s- kS)

(C10)

where Wk(z) = a2 (ksZ)/L is the spectral energy density. Substitution

of the results (C9) and (ClO) back in (C8) yields,

af a qJ' af
T = T D(J) Tf

where

k a 2 k n2W k (z) Ion±1 2 v

D (J) =r w r E {dk2 .(C11)
4n Yr kw n=1 rn Kb(J) ± (ks- k) ]2 + 2

w

In the limit of small growth rate c/ks << 1, (Cl) is reduced to Eq.

(42), Sec. IV,

2

r w  n=O s

where kn = kr + 2yz 2 kw.
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APPENDIX D: SUMMATION OF FOURIER COEFFICIENTS

We present a general technique of computing sums of the form,

En [ IQn+(J) 1 nQ(J) 12 ] • (Dl)
n=O

The quantities Q n(J) are the Fourier coefficients from the

decomposition of the phase exp[i*(J,e)] of the perturbation into

harmonics of the angle variable e for the unperturbed system. The

knowledge of the individual Q n±(J) is not required in the computation.

The technique should be applicable to a wide class of integrable

systems experiencing a periodic perturbation with only minor

modifications. In our case Q n(J) are defined by,

cos [*(J,e) + 6 = E Q+(J) cos(ne + 8sZ) + Qn(J) cos(ne - 6 z).
n=O n n s

(D2)

Closed forms for 0 ±(J), obtained in Ref. 2 for the case of an

untapered wiggler, appear in Appendix A.

For untrapped particles we have,

Q+ + 2~

Q2m- 02m ' 2m+- + Q 2m+l"

Setting s = 0 in (D2) and differentiating in e, we obtain,

aos d si= - (2m) 202m sin 2m, (D3a)

m= 1
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-sin [- =O cos q= E (2m+1) 2 02m+1 cos[(2m+l)e].m=O 
(D3b)

Squaring the right-hand sides of (D3a), (D3b), adding them and

integrating over 0 we obtain,

T n2 [Ion+1 2  1 -12] = 2 E n2 10n12 = '2 (Cos2 + sin2 *) de

0
(D4)

Applying the same procedure to untrapped particles we obtain,

)cos W=d- sin E n(0 + n) sin nO (D5a)
m=1 n n

a i dde(n +_

sin [9- ]= os q -- .n ( n  ) cos ne , (DMb)
dO m=O

and, after squaring, adding (D5a) and (D5b) and integrating over e

O n2  12 + 112 2 = 12 + n - 12E" n2 (Ion+ 12+Ion-12 =n R-(Io+__ on

n=O n=O 2

n (D6)
1J(~) 22

1- (dO (cos 2 + sin2*) dO.

Thus in both cases,

n 2(1 +12 + 10 I2~ 1 d J2~ 2 dO. (DW)
n=O n

0

Using the definition Eq. (11) for 0(*), and Eq. (8) for the unperturbed

Hamiltonian (as = 0 ) in the right-hand side of (D7) we have,
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1 n 2'=mx d,

mn (D8)

2 kw 1 *x ( YrHo(J) awar ncosr + 1 /2

Yrb(J) Rj *in kw kw

The last integral in (D8) is by the definition (11) the action J for

the unperturbed Hamiltonian, yielding the final result,

- 2k
C, n2 ( 1on+,2 + n-2) 2 kj (D9)

n=Or
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Figure 1. Surfaces of section expressed in y, 4'coordinates on the

left side and action-angle coordinates on the right side.

-5
The parameters are a. = 2, a r= 5x10_ , *r = 7n/6, y r= 25

and(a)a =0 () a =5xl0 7 , ) rW = 1.016, (c) as
2x10-6 , wO /wr 1.024
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Figure 2. Transition to chaotic behavior. Plotted again are surfaces

of section in both y, *. and J, e representations. The

parameters are aw = 2, a r= 5x105 V 'I. = 7n/6, y r= 25 and

os/wr= 1.024. The sideband amplitude increases from (a)

as = 1x105 to (b) a A= 3x105 to (c) as = 5x105.
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distribution J = 0.7 Js with aw = 2, ar = 5xlO-
5 ,r
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- 5

and * r = 7/6, r = 25. Squares correspond to a continuous

type of spectrum, peaked at s /r = 1.016 with A = 100 and

= 0.1. Dots correspond to a wide discrete peaked at

/w = 1.024 with A = 20 and = 0.5. Triangles

correspond to a single frequency spectrum with r/wa r

1.016. The upper and lower solid lines correspond to the

theoretical results from Eqs. (36) and (42) respectively.
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